Опубликовано в 1998 году (полностью тут:
http://www.ixbt.com/multimedia/digaudiofaq.html )
"Что такое АЦП и ЦАП?
Аналогово-цифровой и цифро-аналоговый преобразователи. Первый преобразует аналоговый сигнал в цифровое значение амплитуды, второй выполняет обратное преобразование. В англоязычной литературе применяются термины ADC и DAC, а совмещенный преобразователь называют codec (coder-decoder).
Принцип работы АЦП состоит в измерении уровня входного сигнала и выдаче результата в цифровой форме. В результате работы АЦП непрерывный аналоговый сигнал превращается в импульсный, с одновременным измерением амплитуды каждого импульса. ЦАП получает на входе цифровое значение амплитуды и выдает на выходе импульсы напряжения или тока нужной величины, которые расположенный за ним интегратор (аналоговый фильтр) превращает в непрерывный аналоговый сигнал.
Для правильной работы АЦП входной сигнал не должен изменяться в течение времени преобразования, для чего на его входе обычно помещается схема выборки-хранения, фиксирующая мгновенный уровень сигнала и сохраняющая его в течение всего времени преобразования. На выходе ЦАП также может устанавливаться подобная схема, подавляющая влияние переходных процессов внутри ЦАП на параметры выходного сигнала.
При временнОй дискретизации спектр полученного импульсного сигнала в своей нижней части 0..Fa повторяет спектр исходного сигнала, а выше содержит ряд отражений (aliases, зеркальных спектров), которые расположены вокруг частоты дискретизации Fd и ее гармоник (боковые полосы). При этом первое отражение спектра от частоты Fd в случае Fd = 2Fa располагается непосредственно за полосой исходного сигнала, и требует для его подавления аналогового фильтра (anti-alias filter) с высокой крутизной среза. В АЦП этот фильтр устанавливается на входе, чтобы исключить перекрытие спектров и их интерференцию, а в ЦАП — на выходе, чтобы подавить в выходном сигнале надтональные помехи, внесенные временнОй дискретизацией.
Что такое передискретизация (oversampling)?
Это дискретизация сигнала с частотой, превышающей основную частоту дискретизации. Передискретизации может быть аналоговой, когда с повышенной частотой делаются выборки исходного сигнала, или цифровой, когда между уже существующими цифровыми отсчетами вставляются дополнительные, рассчитанные путем интерполяции. Другой способ получения значений промежуточных отсчетов состоит во вставке нулей, после чего вся последовательность подвергается цифровой фильтрации. В АЦП используется аналоговая передискретизация, в ЦАП — цифровая.
Передискретизация используется для упрощения конструкций АЦП и ЦАП. По условиям задачи на входе АЦП и выходе ЦАП должен быть установлен аналоговый фильтр с АЧХ, линейной в рабочем диапазоне и круто спадающей за его пределами. Реализация такого аналогового фильтра весьма сложна; в то же время при повышении частоты дискретизации вносимые ею отражения спектра пропорционально отодвигаются от основного сигнала, и аналоговый фильтр может иметь гораздо меньшую крутизну среза.
Другое преимущество передискретизации состоит в том, что ошибки амплитудного квантования (шум дробления), распределенные по всему спектру квантуемого сигнала, при повышении частоты дискретизации распределяются по более широкой полосе частот, так что на долю основного звукового сигнала приходится меньшее количество шума. Каждое удвоение частоты снижает уровень шума квантования на 3 дБ; поскольку один двоичный разряд эквивалентен 6 дБ шума, каждое учетверение частоты позволяет уменьшить разрядность преобразователя на единицу.
Передискретизация вместе с увеличением разрядности отсчета, интерполяцией отсчетов с повышенной точностью и выводом их на ЦАП надлежащей разрядности позволяет несколько улучшить качество восстановления звукового сигнала. По этой причине даже в 16-разрядных системах нередко применяются 18- и 20-разрядные ЦАП с передискретизацией.
АЦП и ЦАП с передискретизацией за счет значительного уменьшения времени преобразования могут обходиться без схемы выборки-хранения.
Как устроены и работают АЦП и ЦАП?
В основном применяется три конструкции АЦП:
параллельные — входной сигнал одновременно сравнивается с эталонными уровнями набором схем сравнения (компараторов), которые формируют на выходе двоичное значение. В таком АЦП количество компараторов равно (2 в степени N) — 1, где N — разрядность цифрового кода (для восьмиразрядного - 255), что не позволяет наращивать разрядность свыше 10-12.
последовательного приближения — преобразователь при помощи вспомогательного ЦАП генерирует эталонный сигнал, сравниваемый со входным. Эталонный сигнал последовательно изменяется по принципу половинного деления (дихотомии), который используется во многих методах сходящегося поиска прикладной математики. Это позволяет завершить преобразование за количество тактов, равное разрядности слова, независимо от величины входного сигнала.
с измерением временнЫх интервалов — широкая группа АЦП, использующая для измерения входного сигнала различные принципы преобразования уровней в пропорциональные временнЫе интервалы, длительность которых измеряется при помощи тактового генератора высокой частоты. Иногда называются также считающими АЦП.
Среди АЦП с измерением временнЫх интервалов преобладают следующие три типа:
последовательного счета, или однократного интегрирования (single-slope) — в каждом такте преобразования запускается генератор линейно возрастающего напряжения, которое сравнивается со входным. Обычно такое напряжение получают на вспомогательном ЦАП, подобно АЦП последовательного приближения.
двойного интегрирования (dual-slope) — в каждом такте преобразования входной сигнал заряжает конденсатор, который затем разряжается на источник опорного напряжения с измерением длительности разряда.
следящие — вариант АЦП последовательного счета, при котором генератор эталонного напряжения не перезапускается в каждом такте, а изменяет его от предыдущего значения до текущего.
Наиболее популярным вариантом следящего АЦП является sigma-delta, работающий на частоте Fs, значительно (в 64 и более раз) превышающей частоту дискретизации Fd выходного цифрового сигнала. Компаратор такого АЦП выдает значения пониженной разрядности (обычно однобитовые — 0/1), сумма которых на интервале дискретизации Fd пропорциональна величине отсчета. Последовательность малоразрядных значений подвергается цифровой фильтрации и понижению частоты следования (decimation), в результате чего получается серия отсчетов с заданной разрядностью и частотой дискретизации Fd.
Для улучшения соотношения сигнал/шум и снижения влияния ошибок квантования, которое в случае однобитового преобразователя получается довольно высоким, применяется метод формовки шума (noise shaping) через схемы обратной связи по ошибке и цифрового фильтрования. В результате применения этого метода форма спектра шума меняется так, что основная шумовая энергия вытесняется в область выше половины частоты Fs, незначительная часть остается в нижней половине, и практически весь шум удаляется из полосы исходного аналогового сигнала.
ЦАП в основном строятся по трем принципам:
взвешивающие — с суммированием взвешенных токов или напряжений, когда каждый разряд входного слова вносит соответствующий своему двоичному весу вклад в общую величину получаемого аналогового сигнала; такие ЦАП называют также параллельными или многоразрядными (multibit).
sigma-delta, с предварительной цифровой передискретизацией и выдачей малоразрядных (обычно однобитовых) значений на схему формирования эталонного заряда, которые со столь же высокой частотой добавляются к выходному сигналу. Такие ЦАП носят также название bitstream.
с широтно-импульсной модуляцией (ШИМ, Pulse Width Modulation, PWM), когда на схему выборки-хранения аналогового сигнала выдаются импульсы постоянной амплитуды и переменной длительности, управляя дозированием выдаваемого на выход заряда. На этом принципе работают преобразователи MASH (Multi-stAge Noise Shaping — многостадийная формовка шума) фирмы Matsushita. Свое название эти ЦАП получили по причине применения в них нескольких последовательных формирователей шума.
При использовании передискретизации в десятки раз (обычно — 64x..512x) становится возможным уменьшить разрядность ЦАП без ощутимой потери качества сигнала; ЦАП с меньшим числом разрядов обладают также лучшей линейностью. В пределе количество разрядов может сокращаться до одного. Форма выходного сигнала таких ЦАП представляет собой полезный сигнал, обрамленный значительным количеством высокочастотного шума, который, тем не менее, эффективно подавляется аналоговым фильтром даже среднего качества. "