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Attack and Release Time Constants in RMS-Based

Compressors and Limiters

FRED FLORU, AES Member

THAT Corporation, Marlborough, Massachusetts, USA

Although RMS detector time constants are often set by ear, an art in itself, the
importance of a mathematical "tool" is explained. The mathematics of the RIMS
detector is revisited and models for time and frequency behavior are determined.

0 Introduction

The Root Mean Square, or RMS, value of an ac voltage or current is the equivalent dc voltage
or current that generates the same amount of real power in a resistive load. In other words, RMS
is the square root of the integral of the square of the ac signal, over a period of time and weighted
by the same length of time. The mathematical formula follows:

Vr_ = lira [1 _V_n(t)'dt (1)

where Vr._ is the RAdSvalue of the input waveform, v_.(t), and T is the time at which the
measurement is made.

A true RMS detector leads to a dc output in conformance with equation (1), independent of
the input waveform. A quasi RMS detector can be built by scaling the output of a peak or
average detector for a specific waveform, such as a cosine. In the case of the peak detector the
scaling factor is the crest factor defined as the ratio of peak to R_MSvalue. In particular, for a
cosine, the crest factor is the square root of two.

RMS detectors have evolved Over time using different technologies. One of the first
technologies was to use the signal to be measured to heat a resistive element and measure the
element's change in temperature. This method is still used in high frequency true RMS detectors.
While this kind of detector has a wide frequency bandwidth, and such designs have been
integrated on silicon [1], this method is not suitable for audio. The main disadvantages are limited
dynamic range of 40 to 60 dB and a slow attack time constant, making it inadequate for many
audio protection applications.

Advances in bipolar technology in the 1970's made possible the introduction of a solid state
true R/VISdetector which does not use heating to make the measurement. Dynamic range of such
detectors is better than 80dB, and an attack time of less than lms is possible. Thus, this paper



concentrates on silicon-based detectors which do not use thermal methods to measure RMS
value.

t.0 The RMS detector

1.1 Building blocks

Definition (1) implies that the integration time is infinite. This is not practical for any real time
application. Therefore, a tradeoffmust be made. From filter theory, it is shown that the output of
a low pass filter approximates the integral of its input signal. However, the integration time is not
infinite and it is limited by the time constant of the filter. This concept is applied here.

Fig 1.a shows a block diagram of an R/VISdetector which provides a practical approximation
to definition (1). The input voltage is squared and then applied to the first order low pass filter
made of resistor R and capacitor C. The following equations can be deduced:

v,(t)=v_(t) (2)

v_(t)- Vg(t) = C dV2(t) (3)
R dt

where it is assumed that the square and square root blocks have infinite input impedance and zero
output impedance.
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Substituting (2) into (3) and using notation x = _-_, the following differential equation can be
written:

v2 (t) = ,cd_t) + V2(t) (4)

In the next section it is shown that the solution V2(t)of the differential equation (4) is linearly
proportional to the integral of the square of the input voltage and thus Vrm_(t)is proportional to
the true RMS level of v,,(t), However, for most audio applications, a logarithmic representation
of the RMS output level is more useful. The logarithm function provides a natural compression
of the ac input dynamic range, so that the output signal is proportional in decibels (dB). Using a
minimal interface, an LED or analog display can be attached to the detector output, realizing an
EMS meter. A compressor or expander can easily be achieved by connecting the detector output
to a Voltage Controlled Amplifier (VCA) with an exponential control characteristic. VCAs with
gain control directly in dB are readily available on the market.

Fig. 1.b shows the simplified circuit diagram of a log-responding level detector [2]. The input
voltage is full wave rectified, converted to a-current, and applied to OAI, D1 and D2. Let us
assume that D1 and D2 have the same characteristics, most importantly the same saturation
current Is. D1 and D2 in the negative feedback path of the operational amplifier OA1 convert the
input current, ii,(t), to a logarithmic voltage:

i · 2

[, Is J t, Is J



where Is is the diode saturation current and Vr is the thermal voltage (kT = 25.9mV, at room
q

temperature). Also, notice that the identity lii,(t)l_= iin2(t)is used.

Therefore, vi(t) is proportional to the logarithm of the square of the input current. The voltage
vt(t) present at the OA1 output needs to be integrated. There are two ways to accomplish the
integration. One way is to exponentiate the voltage vt(t) and filter it in the linear domain. The
square root operation is accomplished by taking the logarithm of the output voltage and using !t
as a negative feedback to the logarithmic block. In this way, the output voltage is subtracted from
the squared input voltage in the log domain. Due to the properties of logarithms, this scheme
performs the square root operation. This technique is explained in more detail in reference [3].

Another way to integrate vt(t) is to a filter it in the log domain. In Fig. 1.b, D3, Cr and Ir
serve as a first order log domain low pass filter. The description of log domain filters is elaborate
and is beyond the scope of this paper. Log domain filters are covered in reference [4] in more
detail. However, for this circuit let us identify the currents through each component of the log
filter.

The current in D3 is exponential with the voltage across it:

Ira= isexpl. V_(t)_--V_(t)t (6)

The current in the capacitor Cr is proportional to the instantaneous change of voltage across it:

icT=CTdV2(t) (7)
dt

So, using Kirchoffs Current Law CKCL), the current in i)3 is:

im= isexp(V, (t)_(t)) = CTd_t(t) + IT (8)

where Cr is the timing capacitor and Ir is an external current source that sets the timing current 1.

Substituting for vi(t) in equation (8) using equation (5) yields:

i: (t)= IsCTexp(V2. (t)) dY2 (t) + IslTeXpl V2 (t)_ (9)
k VT Jdt k. VTJ

The last block in Fig. 1, OA2, D4 and current source la, is just an output buffer and a level
shifter. Thus the dc output voltage is:

Vm(t) = Va(t)- VTln(I_-ss1
(10)

Ideally the long term RaMSoutput is a pure dc voltage. As shown in Fig 1.b, V2(t)is the result
of the integration of the log filter. However, V2(t) is still a function of time because it carries

It is interestingtonotethaton a transientbasis,thecurrentthroughDJ and Ceis linearlyproportionalto the
square of the input current.



transient and ripple information due to the finite integration time. Consequently, V,,,_(t) in
equation (I0) varies with time, also. Equation (10) can be solved for V2(t). Then, substituting for
V2(t)in equation (9), and rearranging terms the following equation is obtained:

where the following notations were used:

CTV,
I_ = IBIT (12); _ = (13)

I,

where 1Ris the reference level and v is the integrator time constant.

The reference level, IR,will be the input current for which output voltage V_o_is zero volts.

Let us define the following function:

y(t)= expl V_r(t) ) (14)

Substituting (14) into (11), the differential equation can now be written as:

i}(t)=· dy(t)+y(t) (15)
I_ dt

Notice the similarity between equations (4) and (15). Both have the familiar form of the first
order Iow pass filter differential equation [4]. Appendix I describes how to solve this first order
differential equation.

From definition (14) it can be seen that V_(t) is proportional to the logarithm ofy(O. In the
next section it is shown that V,_(O is proportional to the logarithm of the square of the RMS 4evel
of the input current. Since the RMS output level is in a logarithmic format, the square root
operation can be easily done by dividing ?_(t) by two. In Fig. 1.b two equal resistors perform
this operation. As a result, V_ is proportional to the logarithm of the RMS level of the input
current.

1.2 General solution

Equations (4) and (15) can be solved using the same method. Appendix I describes in detail
how to solve both equations. The general solution of differential equation (4) follows:

V2(t) = [llv:(t). exp[t] · dt + c] · exp[ -t ] (16)

where c is a constant.

The general solution of equation (11) follows:

expIVv_ft)) =r[li_exp_t)'dt+c)exp(-t)ko, IR k_/ (17)



where c is a constant.

The solutions of the RMS detectors shown in Fig. 1.a and Fig. 1.b show a strong resemblance.
The main difference is that in (17) the solution is in an exponential format. Thus, both circuits
perform the same function of integrating the square of the input voltage and current, respectively.

Furthermore, if the logarithm function is applied to both sides of (17) the following result is
found:

v_(t) =-v* t +2V,ln( l!fi_expFthdt +c) (18)
a: [,_'c J IR _,_J J

Also, note that equation (17) satisfies the definition of the reference level. Indeed, if the input
current RMS level equals the reference level, RM&qiin(t)D=IR,then V_(t--->_=O, for c=O.

Equation (18) has some limitations in explaining the real detector since it describes an ideal
RMS detector. That is where constant c helps. It has different forms for different initial
conditions, e.g., attack or release. Particular values of constant c are discussed in chapter 1.4.

1.3 Particular solution

The general solution has particular solutions for specific input waveforms. One interesting
case is when the input voltage has a sinusoidal function. Therefore let yin(t), in Fig. 1.a and 1.b,
be defined as:

Vin(t) = V0cos(m0 (19)

where Vois the peak voltage and cois the frequency.

The input voltage has no dc component added because the RMS detector input is usually ac
coupled [2]. The input current, i_,(0, for the logarithmic RaMSdetector in Fig 1.b, is the ratio of
the input voltage to the input resistor.

ii.(t) = via(t ) V 0cos(mt) = i0 cos(0_t) (20)
Rin Ri.

where lo is defined as the ratio of the peak input voltage to the input resitor.

Let us substitute v_(t) from equation (19) into equation (16). The solution for the linear
detector, assuming t >> r, is:

V2(t) = -_- G(m, t) (21)

Let us substitute ij_(t)from equation (20) into equation (18). The solution for the logarithmic
detector, assuming t >> r, is:

V_(t) = V, in G(m,t =VT.In + V,.ln(CJ(O,t)) (22)

where G(co,O is the following expression (see Appendix I):



O(c0,t) = 1 -I cos(2c0t) + 2co_sin(2cot)
1+ 4c0='r2 (23)

The real RMS level is calculated by taking the square root. In the case of the circuit in Fig.
1.a, this is accomplished by the last block. Thus the RMS output voltage, V,_, is:

V_m,(t) = --_2_
(24)

In the case of the logarithmic detector in Fig. 1.b, a simple division by two performs this
operation. Again, recalling that the logarithm of a product of terms is equal to the sum of the
logarithms of each term, the RMS detector output voltage, Vr,r_, is:

t,q2IgJ

Equations (24) and (25) show that the output voltage of both detectors is proportional to the
RMS level of the input signal. Obviously, the output voltage of the detector in Fig. 1.a is linearly
proportional to the RMS level of the input signal. On the other hand, the output voltage of the
detector in Fig. 1.b is proportional to the logarithm of the RMS level of the input signal.

Because, an RMS detector with output voltage proportional to the logarithm of the RMS level
is more useful in compressor-limiter applications, the next sections focus only on log-responding
RMS detectors.

Furthermore, the final square root operation requires only a change in scaling the RMS (log)
signal by a factor of halE Therefore, only V,_ as shown in Fig. 1.b and given by equation (18), is
considered for further discussion.

Equation (22) does not have any transient information since t >> r. It can he noted that the
particular solution has two terms: a dc term and an ac term or ripple.

1.3.1 Particular solution dc term

The output dc part, as expected for a sinusoidal input signal, is proportional to the logarithm of
the peak level divided by the square root of two. Ideally, only the dc term is wanted. The ripple
is an error factor that can be minimized by increasing the time constant. From equation (22) scale
and temperature constants can be extracted. If ripple is neglected, then equation (22) can be
rewritten as:

Vvln(lO)( .... ( Io hh T_r=*°°g i mv
Vm= 10 (zm°g(_-I-_RJJ= 5'96'([RaMS(ira(t))]aB-[_]_] (26)

Therefore,therelationshipbetweeninputcurrent,indB,and_S outputvoltage,inmi/,is
linear with a theoretical slope of 5.96 mV/dB at room temperature. In reality, commercial
detector chips run at a higher internal temperature and the slope can vary from 6.1 reV/dB to 6.$
reV/dB at room temperature, depending on the power dissipation of the detector used [2] [6]. In
compressor or expander applications where the RMS detector is connected to a VCA with
matching mi'to dB type linear conversion, it is very important that both devices have the same



slope. Otherwise said, both should have the same internal temperature in order to track properly.
Therefore a good compressor or expander design should use an R_MS detector and a VCA from
the same family. The best scenario is when both devices are integrated on the same substrate and
have guaranteed temperature tracking [6] [7].

In other applications where circuitry is included between the RMS detector and VCA, e.g.,
gate, limiter threshold, or there is no VCA, e.g., metering, external temperature compensation

kT
should be provided. The temperature coefficient can be calculated from thermal voltage V_ = --

q

as being +3300 ppm/°C referred to room temperature. In Fig. 2, two ways of compensating for
the RMS detector output drift with temperature are presented. The temperature correction
element is a resistor with a positive temperature coefficient of +3300 ppmd°C. UnfOrtunately the
temperature-compensated resistors are commonly available only in 5% tolerance, so scale
calibration is usually required. Fig. 2.a presents a common circuit for temperature compensation
[3]. While it is simple to implement, it has a major disadvantage that is the potentiometer
temperature coefficient can affect the temperature tracking of the special resistor. A solution to
this problem is the circuit in Fig. 2.b where the dependence to the potentiometer temperature
coefficient is significantly reduced.

1.3.2 Particular solution ac term

The second term of the last part of equation (22) is the ac component of the RMS detector
output voltage, v,_(t). An interesting characteristic of the log domain filter is that the amplitude
of the ripple is independent of input level. In other words, for the same frequency, lI,',,_ and
lmV,m_input signals generate the same amount of peak-to-peak ripple at the output of the RMS
detector. This behavior can be explained by the property of the logarithmic function that splits the
product into a sum (see Appendix I, equation (AI 14)). Therefore the ac term does not multiply
the dc part.

The ac component contains a combination of second harmonic sine and cosine of the input
signal. For a better understanding of the ac spectrum at the detector output, an approximation of
the logarithmic function is done. A logarithm can be expanded in series as follows:

X 2 X 3 X 4 X n

In(1 + x): k - -- + -- - -- +..... _ (-1) "+'-- (27)
2 3 4 , n

where n=1,2,3 .....

For small x the sum can be approximated to the first tenn. In this case x is the second
summation term of equation (23). For co_ >> I, equation (23) can be approximated to

sin(2co 0
G(w,O = 1+ sin(2co t) In this case x = If x < 0.1 then logarithmic expansion (27)

2cot 2co_

can be applied to the second term of the last part of equation (22), I,'rln(G((o,t)). A commonly

used time constant is r = 35ms [2] [6]. For this particular time constant, VTln(G(w,O) can be
approximated to the first logarithmic expansion term for frequencies greater than 22 Hz. Thus,
using the definition of time constant in equation (13), the expression for ripple becomes:



vrippl_((0,t) _ VT sin(2(0t) _ IT 1 sin(2(ot) (28)
2_'c 2CTto

It is interesting to note that although the input signal was full wave rectified, the ripple is a
pure second harmonic sinusoid. From equation (28) it can be seen that the ripple decreases with
coat a rate of-6 dB/octave. The amount of RMS ripple measured at the RMS detector output is
[8]:

Vr_PP'c=_C r'c01 (29)

All the above approximations are useful for audio applications where the time constant is in the
range of tens of milliseconds. However, in some applications, independent control of attack and
release time constants is required. Most of these applications use the RMS detector with very
short time constants, and provide further processing to shape the transient responses outside the
detector. For these cases, the logarithm expansion cannot be approximated to the first series
term.

1
At frequencies lower than -- the combination of higher order harmonics produces a ripple2rt.

that looks more like a full wave rectified cosine, although the shape is actually a combination of
1

cosine, sine and logarithmic functions. However, at frequencies much higher than --
2_r._

equation (28) is still valid and the ac component is a second harmonic sinusoid. Fig. 3 shows the
difference of the ripple shape at low and high frequency. The time constants used, 17/_,s,is four
orders of magnitude smaller than commonly used for RMS detectors. The Y scale is altered in
order to magnify the high frequency ripple.

Any external control of the time constant implements a !ow pass filter topology that averages
the output voltage V_s. The average of a dc voltage is the same voltage. Consequently, in long
term, the first dc element of equation (22) is not affected by an external averaging process. The
effect of an outside Iowpass on the ac component is a different matter.

Assuming an external linear Iow pass filter as the averaging circuit, and sinusoidal ripple, then
the average, over a period of time longer than the signal period, is zero. This result is very
intuitive since there is an equal number of identical peaks and troughs, over a long period of time,
around a dc offset (see equations (22) and (28)). Therefore, for long time constants ripple
remains a second harmonic sinusoid, and the average dc output of the RMS detector is not
affected by the ripple over the audio band. In contrast, a fast time constant changes the shape of
the ripple and the peaks and valleys are not symmetric anymore (see Fig. 3). The averaging
process will then add a small dc component in proportion to the asymmetry of the ripple. This
phenomenon is called dc error. The dc error is larger at low frequencies where the asymmetry is
magnified.

1.3.3 The dc error

The dc error can be calculated from the ripple expression:



f co8(_(_t) + 2_x
8in(2(ot)_

vri_l,((o, t) = VTIn(1 -_ l +_ -J (30)

Let us define (pas follows:

tan(q)) = 2ox (31)

Then, equation (30) can be written as:

V.pp,_(to,t) =.VT ln(l + cos(q)) cos(2tot - q))) (32)

and focan be calculated from equation (31):

tO= arctan(2(o_) (33)

Equation (32) can be expanded in series in the same manner as equation (:27):'

Vripplo(0) , t) = VT_-_(-1) '+' cos" (L0)cos' (2c0t- q)) (34)
n n

where n= 1,2,3.....

This last equation indicates the harmonic content at the RMS output. For a large time constant
tan(to) = 2co_ --_ oo, therefore to --, (r_./2)and costo --->0. In this case only the first term of the
sum n = 1 is significant. For low frequencies and small time constants, cosq becomes significant
and more and more terms should be taken into consideration.

As discussed earlier, if an external low pass filter is used, it integrates equation (34). Let us
assume that the external low pass filter has a time constant _r2. The dc error is the average of
equation (34):

e% = VT _(-1)_+' cosn((O)icosn (2c0t- q)). dt (35)
'I;2 n n o

Equation (35) can be rearranged as a sum of even and odd terms as follows:

erao= VT_'_fc°s2"-"(q))¥c°s2"-'(2o)t-q))'dt'2n L, 2n-1 _o C°S2_n(q))!c°s2n(2Ot-q))'d0 (36)

Equation (36) is difficult to evaluate. The sum and integration create nested sums that take a
long time to compute. Fortunately equation (36) can be simplified. Let us consider the following
equivalent integral:

E = f cosn(y). dy (37)

Using partial integration, the following reduction formula is obtained (see Appendix II):

fcos_(y).dy=sin_y)cosn_,(y)+n--1[cos._:(y),dy (38)n

In Appendix II, it is demonstrated that for n odd equation (38) becomes:



Eodd----sin(y)Ic ] cosn-l(y)+ C2 cos"-3(y)+ % cosn-5(y)+'"-FC?_ 1 (39)

where ctare real coefficients. For the exact values see Appendix II.

In Appendix II it is demonstrated that equation (39) integrated over one signal period is zero.
The intuitive explanation is that function sin(y) has equal peaks and troughs over a period of time
and multiplies a sum of higher harmonics. Therefore, there is no contribution from odd terms in
equation (36). For n even equation (38) becomes:

E .... = sin(y)Ic _COS"'-'(y)+ C2 cosn-3(y)+ C3 cos"-5(y)+...+c_ cos(y)l + c?y (40)

In this case there is an extra dc term at the end of equation (40). Integrated over the one
signal period everything that is multiplied by sin(y)is zero. The only not zero expression is the

last coefficient, c%_. The formula for the last coefficient was deduced in Appendix II as follows:
2

(n - 1)(n - 3)(n - 5)...3.1 (41)
c.?_.= n(n - 2)(n -4)...4.2

Taken into account all results from equations (38), (39), (40) and (41), equation (36) can be
simplified as:

-V _ c°s:---_(qQ (2n - l)(2n - 3)(2n - 5)...3.1
erac= x,z7' 2n 2n(2n - 2)(2n - 4)...4.2 (42)

where n=1,2,3 .....

Since cos(fo) is raised to an even power it is positive for any value of fo. Note that the dc
error is always negative. Additionally, the dc error is proportional to the thermal voltage Mr
which means that the dc error increases with temperature at a rate of+33OOppm/°E a .

Cos(fo) can be written as a function of tan(fo)and replacing tan(fo)by its definition (31):

cos2(qQ_ 1 1
1+ tg 2(¢p)= 1+ 4c024= (43)

and the dc error becomes an explicit function of frequency coand time constant _:

1 (2n- 1)(2n- 3)(2n- 5)...3.1 (44)
erac=-VT_ 2n(1 + 4c02_2)2" 2n(2n- 2)(2n- 4)...4.2

Fig. 4 shows a plot of equation (44) for a sum of different number of terms, 5, 20 and 100
using a fast time constant of r =17/_s. Unfortunately, the precision of equation (44) increases
slowly with the number of iterations. As can be seen in Fig. 4, the precision is better than 90%

2 In generalthe ripplehas thesametemperaturedependenceas theRMSoutput.
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beyond 20 iterations. As a practical matter, to compute 20 or more iterations requires the use of
a computer.

It is possible to use equation (44) to predict dc error vs. frequency for different time constants.
Fig. 5 shows dc error vs. frequency for two different time constants. In both cases 20 iterations
were used. For the common time constant of 35ms, the dc error is almost zero for the full audio
bandwidth. For the fast time constant of 17Its, the error approaches -15rev (-2.5dB) at low
frequencies.

1.4 Transient response

So far, the transient response at the RMS detector output has been ignored. The transient
solution of equation (18) for the input signal given by (20) is:

V_(t) =V,iai2_-_G((0,t)+c.exp(-t_)1 (45)

where G(co,O is the ac component at the detector output given by (23).

As described in the previous sections, G(co,O adds ripple to the dc output which for large time
constants is small. Constant c is found by?etting boundary conditions at t = 0 and t -> co. With
no signal at the input, a real RMS detector does not have -co output voltage, as equation (18)
might suggest. In commercial devices, the typical dc voltage at the detector output in the absence
of input signal is _,-400mV. This plateau is determined by the RMS level of the detector's input
noise, caused by internal noise sources, input resistor noise and detector input bias currents. The
input noise and input bias currents are not under the designer's control. However, the external
input resistor is. Higher input resistor values means more noise at the detector input and a higher
plateau voltage. Since the maximum input voltage is limited by the application voltage rails,
raising the plateau voltage reduces the detector dynamic range. At any rate, let us define the
plateau voltage as Ve.

1.4.1 Attack

The following boundary condition is true:

Vm_= Vv, t = 0 (46)

Substituting condition (46) in equation (45), c has the follo_vingform:

c= eXP(v_ ) - I4G(c0,0 ) (47)

By replacing equation (47) in equation (45) V_,_has the following solution:

V_(t) = VTla[ 2-_ (G((0, t) - G((o,0) exp(- t)) + exp(- t) exp(_-xP)] (48)

Relation (48) is the general solution of equation (18) for attack and particular input signal
defined in (20).

I1



In equation (23) it can be noted that the second term of G(co,O is inverse proportional to
frequency co. For a commonly used time constant, v = 35ms, the maximum value of G(w,O at
20Hz is close to one. In order to make the following equations more clear and to better
understand the time dependence of the RMS detector output voltage, it can be assumed that
G(co,O = 1. Therefore, equation (48) can be written as:

V_(t) = VTlnl 2-_ [1-- exp[- t) [1- 2I-_ exp[_-_r))] ] (49)

Equation (49) does not explicitly show the time dependence at the detector output. Therefore
the following approximations can be made:

For t << _:

exp(_ t)_ 1_tx (50)

Combining (50) and (49):

Vms(t) = Vp+ VTInll +tI_-_/-2expl-VP)x[,2IR _, V,) -1]1- ln(l+t) (51)

Therefore the start of the attack is proportional to ln(1 + t). Also it is directly proportional to

the logarithm of the square of the input peak current and inversely proportional to the logarithm
of the time constant r.

For t >> r , exp(-t) is very small. So series approximation (27) can be applied to (49).

Combining (27) with (49):

V_(t)= V, IIn(2_-RI-exp(---t)I1-2-_-expI-_)))-, '_/k l0 kv,ydJ 1-exp(-t) (52)

Equation (52) shows that the end of the attack is proportional to 1- exp(-t).r

In Fig. 6.a, equations (49) (solid line) and (51) (dashed line) are plotted for time constant r =
lOOmV

35ms, plateau voltage Ye = -400reV, reference level Ia = , and input level ten times,
&.

+20dB, above the reference level. In long term the RMS output voltage is _120mV. The dashed
line represents the initial fit for t << r. Fig. 6.b shows equations (49) (solid line) and (52)
(dashed line). Equation (52) is the approximation for t >> r. Fig. 6.c and Fig. 6.d show the
influence of the ripple for two different time constants, 35 ms and 171ts. The solid line represents
the approximation of the general solution for G(o,O=l, equation (49), and the dashed line
represents the general solution, equation (48).
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1.4.2 Release

When the detector input signal is removed (or decreased), the RMS output does not recover
right away, because the timing capacitor does not discharge instantaneously. Therefore, the RMS
output voltage can be determined by solving equation (17) for a new set of initial conditions. Let
us assume that the input current, il,(t) is zero for t > 0. Then, the integral in equation (17) is zero
as well. Equation (17) can be written as:

exp V_(t)) =c

Note that for t --> oothe detector output voltage V,,,_-+ -oo. A practical RMS detector does
not have -oo output voltage. As explained in section 1.4, the RMS detector output voltage will
eventually reach a plateau voltage, Vp. In order to satisfy this condition a new constant should be
added to equation (53).

exp(V-_,(t))=c.exp(-t)+c' (53a)

Also, let us assume that for t < 0 the RMS detector output voltage is given by the attack time
equation (49), for a very long time. Therefore, for t < 0 the detector output voltage is

vTln.t!2).
I dinJ

The new set of conditions is:

For t = 0:

I°_ - c+ c' (54)
2I_
For t-+oo:

The system of equations (54) and (55) can be solved for c and c'. Substituting the two
constants into (53a), Vr_(t) during release time has the following relation:

V,_(t) = Vrln[exp/Vp) + _-explY. P))

In order to understand the time dependence of relation (56) it can be safely assumed that

exp(-_,p) is very small. Indeed, for Vp =-400reV, exp(_)= 1.96.10 -7. However, the second$

summation term of the logarithm in equation (56) decreases exponentially with time. Therefore,

13



t&

exp(_) will be significant after some period of time. This specific period of time during which

eXP(v_) can be neglected, can be determined by imposing the condition that eXP(v_--) is ten

times smaller than the second summation term of the logarithm in equation (56). Thus, for

t < x(ln(--_,_ - exp exp( ) can be ignored in equation (56) For Vp = -400rev
[. (201, VrJ

and input current 20dB above the reference level, t < 1Z 74 'c. In this case V,_(t) is proportional
t

to --:
,g

V_(t) -- V, In_'I4) - VTt (57)k.2IRJ

For t>xIlnI_-expIVe))[.[.20I_ _.VrJJ-_rl the contribution of eXP(v_-) can not be neglected

anymore. In this case exp(-t) is very small and expansion in series (27) can be used.

Consequently equation (56) is approximated as:

_- 'cYt_2Ia k VTJ

Equations (56), (57) and (58) are plotted in Fig. 7 using a time constant _ = $$ms, plateau
lOOmV

voltage Vp = -400reV, reference level IR - and input level ten times, +20dB, above the

reference level for t __0. As it is expected the slope is quite linear until V,,,, approaches Vp. The
dashed line shows the linear approximation in (57) and the dash dot line shows the exponential
approximation in equation (58).

In both cases, attack and release, it is assumed that the input level suddenly occurs and
suddenly disappears, respectively, at the input. This is not the case with music material that has a
large dynamic range. If input signal changes from one level Io to another Il, in all the above

formulae the plateau voltage Veis replaced by and all results and plots remain valid.
zl_j

2.0 Feedforward compressor

The major topologies for compressors and expanders are feedforward and feedback
configurations [9]. Fig. 8 shows basic configuration of these processors. The main difference
between feedforward and feedback is in which signal is presented to the detector input. In the
feedback scheme, the detector "sees" the output level. One advantage of this topology is that in

14



the case of a compressor, the output dynamic range is squeezed by the compression ratio, so the
detector "sees" a smaller dynamic range. However, in feedback compressors infinite compression
is theoretically impossible 3 [9].

The feedforward scheme overcomes this problem of infinite compression [9]. In fact even
negative compression is possible with feedforward designs. Although the detector requires larger
dynamic range at its input, high performance compressors can be built.

In Fig. 8, block k is just a dc gain for adjusting the compression ratio. The VCA transfer
function is [5]:

g= exp(- 2_TI (59)

where Vc is the VCA gain control voltage, as shown in Fig. 8 . Also note that the VCA is a
current in - current out device [5].

In the previous sections it was shown that besides the dc level the RMS detector output has
two other important components. One is the long term ac ripple, superimposed on the dc; the
other component is the transient, or short term behavior. In the following chapters the influence
of long and short term components is analyzed.

2.1 Influence of RMS ripple

The VCA control voltage is:

Ve(t): k.V_(t) (60)

where k is a constant.

Substituting (22), (23) and (60) in (59), assuming that oar>> 1, the VCA transfer function, or
gain, is:

k

(
g(C0,t) =/_-_2/1 + (61)

It has been assumed that the compressor input is a cosine, then combining (20) with (61), the
VCA output current is:

k _-k + k sm3t0ti0(cos(t (6,_)k 8co'_ /

where a is defined as:

o[= arctan(sk_ _ (63)

Theoretically, the compressor output contains only a third harmonic component in addition to
the fundamental. The amplitude of the third harmonic is:

3 Compressionratiosof ]0ormoreapproximatequitewellan infinite compressor.
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k1 (64)113 tl= st
Therefore, the feedforward compressor distortion decreases at a rate of-6dB/oetave. From

formula (64), with infinite compression (k = 1) and r = 35ms, the distortion at lkttz is 0.057%
(or -6$dB) and at 60Hz is 0.95% (or -40dB). At lower frequencies (20 - 50 Hz) the distortion is
underestimated by formula (64) because approximation (61) is no longer valid and more terms
should be taken into account. In reality the distortion is slightly higher than predicted by formula
(64). Also note that the distortion depends linearly on the compression ratio.

Of course, this evaluation assumes no distortions in the VCA and a perfect full-wave rectifier
in the RMS detector.

2.2 Influence of RMS transient response

2.2.1 Attack

The transient response influences the envelope of the VCA output current. Since the RMS
detector cannot respond instantaneously, the VCA gain will not change immediately when the
signal is applied. Depending on the time constant used, for a very short time it is possible to see
full waveform amplitude at the compressor output. Fortunately the initial rate of amplitude
decrease is very high. Within _ second& the VCA gain will decrease significantly. Combining
(49) and (60) in (59) and assuming (for simplicity) that the compressor threshold is set at the
RMS reference level, implying Vp = OF,the VCA gain during attack is described by the following
equation:

Io -k 2I_ t -}

For t --* 0, equation (65) can be approximated by:

0
Therefore the initial rate of gain decrease (around t = 0) is proportional to the square of the

peak of the input current and inversely proportional to the time constant r. At the other extreme,
for t >> r, the signal envelope decreases slowly at a rate given by the following formula:

g(t)=__ _- -'+_(1-I_Jexp['-_JJ (67)

The VCA output envelope during attack is pictured in Fig. 9.a, equation (65), with its two
approximations equations (66) and (67). The final gain reduction is -20dB. Fig. 9.b shows a plot
of equation (65) in decibels.

Often, an important compressorAimiter function is to protect a speaker driver. To determine
whatever protection will be adequate, it is important to know the power delivered to the load
during the attack time.
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2.2.2 Release

After a large signal has been present, if the input decreases, the RMS detector does not react
immediately. The capacitor of the log domain filter has to discharge. Therefore, during any sharp
decrease, a compressor's output is squashed and slowly recovers. The relation for RMS output
during release was demonstrated in section 1.4.2 . Combining equations (56) and (60) and
substituting them in (59), the following result represents the VCA gain during release:

k

g(t) = I1 + I2I--_ - 11expl- ti) -_ (68)

Fig. 10.a shows the release envelope, equation (65), for an infinite compressor (k = 1), time
constant 35ms and 20dB initial gain reduction. Fig. 10.b shows a plot of equation (65) expressed
in decibels. The release shape and duration have a definite sonic impact. A fast release time
produces a "pumping" amplitude modulation, sometimes along with noise modulation. Longer
release time makes the signal gain changes harder to notice, but causes significant gain reduction
for a long period of time (possibly seconds). It is more critical to set release time by ear than the
attack time.

2.3 Influence of dc error

The dc error was calculated in section 1.3.3. As it can be seen in Fig. 5, the error at the RMS
output at low frequencies is around -15mV for the case of a very fast time constant. Since the
detector constant is _ 6 mV/dB, this causes an error in compression gain of around 2.5dB, for
infinite compression. Thus the dc error at the RMS detector output translates into a compression
error at the compressor output.

This error can be calculated by substituting equations (44) and (60) in (59). Ultimately the
compression error can be expressed as a VCA gain error, in dB, by applying the well known
formula 20 log(g_rro_),where g_rroris the gain error. Therefore the compression error in dB is:

_ 10.k 5-_ 1 (2n-1)(2n-3)(2n-5)...3.1 [dB] (69)
erc°=Pr_i°" ln(10)_2n(l+4c02,r2) :" 2n(2n-2)(2n-4)...4.2

where n=1,2,3,.., and k is the same dc gain factor as shown in Fig. 8.

Fig. 11 shows a plot of equation (69) for two time constants: normal 35ms and fast 17ps. As
expected, for the fast time constant, the error is significant.

3 Conclusion

Compressor and expander attack and release time constants must be set according to the
application. Ifa specific sonic effect is desired, mathematical tools are not very useful. However,
other applications that require more exact knowledge of the output envelope, such as speaker
protection and broadcasting will benefit from exact "tools" to calculate signal transients. For
example, speaker manufacturer could specify maximum attack time and tailor it for best sonic
performance. In broadcasting, long-term and transient overmodulation are concerns. In these
cases, the compressor can be easily simulated using the formulae derived in this paper.
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In sections 1.3.3 and 2.3 it is shown the influence of the fast time constant to the precision of
the RMS detector and compressor-Iimiter. Most importantly, the compression factor becomes a
function of frequency creating a compression error at Iow frequencies. This error can be
minimized in two ways. One solution is to increase the RMS detector time constant up to a value
where the Iow frequency compression error is acceptable. Another solution is to decrease further
more the time constant and extend the dc error to high frequencies as well. This is possible
because if v _ 0, in equation (69), then the dc error is constant and independent of frequency.
Also, note that if the RMS detector and VCA track with temperature, the dc error is independent
of temperature as well.
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Appendix I

Appendix I describes the detail of solving the log filter and the low pass filter differential
equations [10]. Let us start with the log filter equation, (11) in the main text:

dIIv l)I_ - x exp + exp (Al l)

Let us definey(t) as:

expl V-_,(t) 1 (Al 2)
y(t)=

By substituting equation (Al 2) into differential equation (AI 1), equation (Al 1) becomes:

dy(t)
ly(t )=1i_n(t) (Al3)

dt x z I_

In order to easily integrate the left term of equation (Al 3) it is useful to write it as one term.
This can be done by multiplying the left term by a particular exponential function as follows:

d

Id_tt)+I y(t))exp(u(t))=_(y(t). exp(u(t))) (Al4)

The correct function u(t) is found by expanding the right term of(Al 4) and comparing it to the
left term:

d(y(t,, exp(u(t)))= exp(u(t))-(d-_tt))+ y(t)' exp(u(t)) d_tt) -

(_ dy(t))+ y(t)d____tt))'exp(u(t)) (Al 5)dt/

Comparing the last part of(Al 5) to the left term of equation (Al 4), u(t) must satisfy:

du(t)_1 (Al6)
.dt

in order to satisfy equation (Al 4).

The solution of equation (Al 6) follows:

u(t)=I l'dt =t_ (Al7)

Now multiply both terms of equation (Al 3) by exp(u(t)):

1 i2(t)
(d--_tt)+1 y(t))exp(u(t))=I-i2? )) exp(u(t)) (Al8)_ t R ,/
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Substituting the definition of u(t) from (Al 7) in (Al 8) and applying the simplification of (A_.
4), equation (Al 8) can be written as:

d (y(t). exp(t))(li_. (t))
(Al9)

=_.'_ I_ )exp,,z/

Equation (Al 9) can be integrated as follows:

y(t).exp(t) r(' i2(t)h (th=j[,_ '-_--R_)exp(_).dt+c (Al10)

where c is a constant.

Furthermore (Al 10) can be arranged as follows:

y(t) = ([(1 i_"!t)) exp(_, dt + c).exp(- t) (Al 11)_.'k'_ 1R j xl:/

By replacingy(t) from (Al 2), (Al 11)becomes:

exp(V___,(t)) = (J;'-_Rexp[';)(r1 i_,(t) ft'_.dt +c) exp(_t ) (Al 12)

Taking the logarithm of the left and right terms, equation (Al 12) can be written as:

V'n_(t) = ln(([ 1_ exp(t) · dt + c) exp(- t)) (Al 13)VT _,k' _ l R k. 'C/'

One of the properties of a logarithm is that the logarithm of a product of terms is equal to the
sum of the logarithms of each term. Mathematically,

In(ab)=In(a)+In(b) (Al14)

So, equation (Al 13) can be arranged as follows:

Vms(t) =- VT t + 2VT,nit/fl i_ exp(t) · dt + c ) (Al 15)

The differential equation of the Iow pass filter (linear RMS detector), (4) in the main text, is
similar to equation (Al 3). Therefore, it can be solved using the same steps from (Al 3) to (Al

iL(0
11). Replacing -;5- by vi,2(t)andy(t) by V2(t)in (Al 3), the solution to differential equation (4)

IR
follows:

V:(t, = II 1-v_(t). exp(-t) · at + c) · exp(- t;) (Al 16)

Let us assume that the input voltage, vi_:(t),is:

vim(t) = Vocos(o_t) (Al 17)
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Substituting (Al 17) in equation (Al 16) Y2(t)is:

Vo2 2 t Vo2 t
V2(t' = I--_-lcos (c0t,'exp(_)'dt+ c)'exp(-t) = (-_--_-xI(1 +cos(2tot,)'exp(_)'dt +c)-exp(-t) =

= (2V--_-_(_ exp(t), dr + I cos(2cot), exp(_, at)+ c). exp(- _

(Al 18)

The above integral can be calculated separately. Let's define E as:

E = E I +E 2 (AI 19)

where:

E,= lexpl t) .dt (Al 20) ; E2= I cos(2tot), exp(t) .dt (Al 21,

The solution to equation (Al 20) is:

E. = lexp(t_) .dt _-x.exp(t) (Al 22)

Equation (Al 21) can be solved as follows:

E2 = I cos(2mt), exp(t) · dt = ,_; I xx;( ) dt---

=x. exp(t) cos(2cot, + 2tox(x. exp(_ sin(2mt)- 2co'ti cos(2cot) -exp(t), dO

(Al 23)

Notice that the last integral of(Al 23) is exactly E2. Thus, (Al 23) can be written as:

E2 = l:' cos(2_t)' exp(t) + 2co,2sin(20_t)' exp(t) -4co 2'2 'E2 (Al 24) r

· Equation (Al 24) can be solved for E2 as follows:

It) cos(2tot)+ 2w,. sin(2cot)E2 = _- exp._. 1+4c0ax2
(Al25)

Substituting equation (Al 22) for El and equation (Al 25) for E:, E becomes:

E= x.exp(t) .(1+ cos(2cot) + 2(ox. sin(2mt).) (Al 26)l + 4ffi 2'1_2 J

The sum of integrals in equation (Al 18) can now be substituted by its solution, equation (Al
26), as follows:
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V2(t)-- (V2 -x.exp -l-_ .exp
k2x 1+ 4(02'c2 ) + - --

(Al 27)

=-_-.(1 + c°s(2x°t) +_+_i-)2t°_' sin(2t°t)) + c. exp(_ t)

Let us define the following function:

G(o),t) = 1+ cos(2t0t) + 2o_-sin(2tot) (Al 28)
· ] +4(02'I; 2

Substituting (Al 28) in (AI 27) the following equation is obtained:

V2(t) =-_-. G((0, t) + c. exp( -t ) (AI 29)

Also, notice that for cot>> 1, equation (Al 28) can be approximated to:

G(o_,t) = 1+ sin(2_ot) (Al 30)
2_'t
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Appendix II

The reduction formula for equation (37) in the main text is found by partial integration.

E = I cosn (y)' dy = I COS(y)COSn-'(y)' dy =

sin(y) COS n-1 (y)-(n-1)lsin(y)cos"-2(y)(- sin(y)), dy =
(Ali1)

sin(y) cos"-'(y) + (n - 1)I(1 - cos2 (y))cosn-2(y). dy =

sin(y) COS n-I (y) + (n - 1)Icos"-2(y). dy- (n - 1)I cos"(y). dy

Last term of above equation is the same as the expression E scaled by (n-I). Thus:

= I cos" (y). dy = sin(y) cos"-' (y) + nn- 11 c°sn-2(Y)' dy (Ali 2)
E

n

We can again apply the reduction formula (AII 2) to the last term of above equation:

E=I cos"(y),dy=sin(y)cosn_,(y)+n-l_sin(y)cos._3(y)+n- 3f cosn_4(y),dy)n n kn-2 n-2 J

lsin(y)c°sn-l(Y)n + n(nn-_12)sin(y)cos"-3(y) 4 (nn(_)_(_n2)3)Icos"-4(y).dy

(Ali3)

If n is odd, the last term of (Ali 3) will always be the integral of cos(y). The closed form

solution of the last term is Ices(y). dy = sin(y). Note that all terms of formula (Ali 3) are

multiplied by sin(y). Therefore for n odd, E can be written as:

4Eoda = sin(y),__ + n(n - 2) n(n - 2)(n - 4) . n(n - 2)(n - 4)-..3. lJ

(Ali4)
n+l

Eoaahas terms.
2

Ifn is even, the last term of(Ali 3) will always be the integral of dy. The closed form solution

of the last term is fdy = y. Note that all terms of formula (All 3), but the last multipliedone, are

by sin(y). Therefore for n even, E can be written as:

Icos_'(y) n-1 _-3 (n-1)(n-3)...5.3 . ,'_ (n-1)(n-3)...5.3.1E .... = sin(y), - + n(-----__2) cos (y)+...3 n(n - 2)(n - 4)...4.2 cos[y)j -_ri(ri - 2)(n - 4)...4.2

(Ali5)

E,_,_has n + 1 terms.
2

23



Eoddand E_w, have cosine terms multiplied by sin(y). But the product of sin(y)cosk(y) can be
written as a sum of higher harmonics of sin(y). Notice that:

k-2 1 . 1 .
sin(y) cosk (y)= lsin(YXl + cos(2y))cos (y) = (_ sm(y) + _ sm(y) cos(2y)) cosk-2(Y) =

= (1 sin(y) + 1 (sin(3y) - sin(yXh'_c°sk-: (Y)=- Il) 1 k2 1 _:__sin(y)cos - (y)+_sin(3y)cos - (y)=_2 4

= 1(14sin(y)c°sk-n(Y) + 4 sin(3y)c°sL4(Y)) 4Iz+1 1 sin(3y)O + cos(2y)) cosk_4(y)) =

1 1. 1. 1. k-4
= 1 I1 sin(y)cosk-n(y)+ 1 sin(3y)cosk-4(y))+ _(_sm(y)+ _ sm(3y)+ _sm(5y))cos (y)=

= (1 sin(y) + 3 sin(3y) + 1 sin(5y)/cosk-n(y)
_8 16 16 /

(Ail 6)

where the following trigonometric property is used:

=l(sin(a+b)+sin(a-b)) (Ail7)sin(a) cos(b)

and k = 1,2,3 ....

The same reduction method can be applied one more time:

sin(y) cosk(y)= (5sin(y)+ 9 sin(3y)+ 5 sin(5y)+ 1 sin(7y))cost-6(y)(Ali 8)

It can be seen that sin(y)cos_(y) is reduced to a sum of odd harmonics of sin(y) multiplied by
the factor costa(y), where m is an arbitrary positive integer. Equation (Ali 7) can be written
differently ilk is odd or even.

For even k, the cosine term becomes one (because it is raised to the power zero) and equation
(Ail' 8) can be written as:

k_+l
2

sin(y) cosk(y) = Z c_sin((2i - 1)y) (Ail 9)
i=l

where ci are real coefficients.

For odd k, the cosine term becomes cos(y) (because it is raised to the power one) and equation
(Ali 8) can be written as:

sin(y)cosk(y)=cos(y _c isin((2i-1)y) (Ali10)
[i=l

where c_are real coefficients.

Taking into account trigonometric property (Ali 7), equation (Ali 10) can be written as:
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k+l

T
k Ci ·

sin(y) cos (y) = _-;- (sm(2iy) + sin((2i - 2)y)) (Ali 11)
' i=l _ x

Therefore, sin(y)cog_(y) can be described as a sum of higher harmonics of sin(y), for any
positive and integer k, as follows:

sin(y)cosk(y)=_Cisin(i,y) (Ali12)
i

Then the integral ofsin(y)cog_(y) over the one signal period is:
2_ 2_1 2.1

lsin(y)cosk(y),dy=l_c_ sin(i,y).dy=_ c_lsin(i, y).dy=0 (Ali13)
0 0 i i 0

Thus, the integral of Eodd(Ali 4) over the signal period of time is zero.
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Figure 1. a) RMS detector blocks with filter in the linear domain.
b) Simplified circuit diagram of the RMS detector with
filter in the log domain.
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Figure 2. RMS detector external temperature compensation.
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Figure 6. e) solid equation (49), dashed general equation (48) for f= 20Hz, r = SSms.
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Figure 7. RMS detector dc output voltage during release time, solid equation (56),

dashed equation (57), dash dot equation (58).
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Figure 9. a) VCA output envelope during attack time, dashed for t _ 0, dash dot
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Figure 9. b) VCA output envelope during attack time in decibels.
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Figure 10. a) VCA output envelope during release time, _'= 3$ms, 2#dB initial
gain reduction.
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Figure 10. b) VCA output envelope during release time in decibels.
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