Прорыв в технологии малосигнальных транзисторов

Долгое время производителей портативных электронных устройств устраивали транзисторы, подобные ВС547 и ВС337 в корпусах SОТ54; или ВС847 и ВС817 в корпусах SOT23. Если возникала потребность в полупроводниках большой мощности, разработчики довольствовались 3-амперными транзисторами ВDР31 в корпусах SOT223. Однако возрастающие требования к миниатюризации аппаратуры заставляют многих производителей выпускать компоненты меньших и меньших размеров. Например, корпус SOT490 имеет размеры 1,6×0,8×0,7 мм по сравнению со все еще очень популярным SOT23 — 2,9×1,3×0,9 мм. И наблюдается тенденция к дальнейшему уменьшению размеров компонентов. С другой стороны, необходимый ток коллектора наоборот увеличивается. А потребность в более высоком КПД, позволяющем увеличить срок службы батареи, требует создания новых транзисторов с низким напряжением насыщения коллектор-эмиттер и высоким усилением по току.

Александр Шелохнев

shell@dectel.ru

ребования времени побудили Philips Semiconductors к разработке и продвижению на рынок целой гаммы транзисторов с малым напряжением насыщения коллектор-эмиттер. Они были названы BISS (Breakthrough In Small Signal). Вот некоторые из них:

- BISS-транзистор 2 A PBSS4350T в SOT23;
- BISS-транзистор 0,5 A PBSS2540F в SOT490 (SC-89);
- BISS-транзистор 3 A PBSS4350Z в SOT223 (SC-73);
- BISS-транзистор 5 A PBSS4540Z в SOT223 (SC-73). Далее для сравнения используются транзисторы BC817-40 (I_{Kmax} = 0,5 A; SOT23) и BDP31 (I_{Kmax} = 3 A; SOT223).

Технологии

Рис. 1 показывает упрощенный поперечный разрез биполярного транзистора N-P-N, а рис. 2 — топологию кристалла.

Транзистор состоит из трех различных слоев: высоколегированного эмиттерного слоя, среднелегированной области базы и низколегированной обла-

Рис. 3. Топология кристалла с ячеистым эмиттером 1-го поколения

Рис. 4. Топология эмиттерного электрода BISS-транзистора 2-го поколения

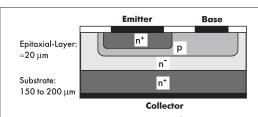


Рис. 1. Упрощенный поперечный разрез биполярного транзистора N-P-N

сти коллектора. Высоколегированная подложка является несущим основанием и проводником. В процессе сборки транзистора кристалл крепят к корпусу посредством склеивания или эвтектического спаивания. Эмиттер и базу соединяют с выводами при помощи тонких проводников.

Для разработки высококачественного транзистора пришлось переработать топологию кристалла и расположения выводов, подобрать материал для подложки и выводов с целью минимизации электрического сопротивления. Использование технологии эмиттера ячеистого типа, которая показана на рис. 3 и 4, позволило значительно минимизировать распределенное сопротивление базы и увеличить эффективность активной области.

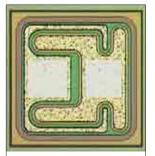
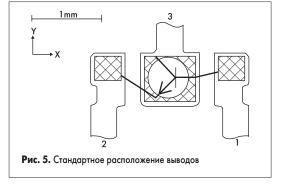




Рис. 2. Топология кристалла транзистора N-P-N (BC337/BC817)

У транзисторов, выполненных в 6-выводных корпусах, форма подложки позволяет изготовить кристалл максимальной площади для данного типа корпуса. В результате удалось снизить тепловое сопротивление по сравнению с 3-выводным корпусом (рис. 5 и 6).

Улучшенные характеристики

У транзисторов, выполненных по BISSтехнологии, улучшены электрические характеристики и, как следствие, снижена рассеиваемая мощность по сравнению с обычными транзисторами. За счет этого достигается уменьшение габаритов кристалла и, соответственно, корпуса.

У BISS-транзисторов улучшены следующие параметры:

- снижена рассеиваемая мощность;
- повышен максимальный ток коллектора;
- повышен пиковый ток коллектора;
- уменьшено напряжение насыщения;
- увеличено усиление по току при высоком токе коллектора.

Чтобы детально показать улучшение характеристик, выберем обычный транзистор — BC817 в корпусе SOT23, стандартный для токов до 0,5 A, и BDP31 — 3-амперный транзистор в корпусе SOT223. SOT23 был выбран, потому что это самый распространенный SMD-корпус для дискретных полупроводниковых приборов, а SOT223 — стандартный корпус для транзисторов средней мощности.

Сопоставив таблицы 4 и 5, вы увидите разницу между обычными и некоторыми из недавно разработанных BISS-транзисторов первого поколения. PBSS2540F — один из мало-

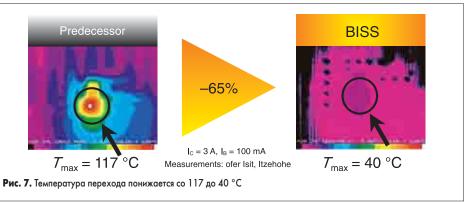


Таблица 1. Максимальный ток коллектора для BISS-транзисторов и обычных транзисторов

Размер	Корпус	I _{K max} , A	BISS	Обычный	I _{K max} , A
1608	SOT490 (SC-89)	0,5	PBSS2540F	BC847BF	0,1
1612	SOT666	1	PBSS4140V	нет аналога	
2012	SOT323 (SC-70)	1	PBSS4140U	BC817W	0,5
2012	SOT363 (SC-88)	2	PBSS4240Y	нет аналога	
2913	SOT23	2	PBSS4240T	BC817	0,5
2915	SOT457 (SC-74)	3	PBSS4350D	нет аналога	
6335	SOT223 (SC-73)	5	PBSS4540Z	BDP31	3

мощных транзисторов, тогда как PBSS4350T имеет самый высокий ток коллектора для корпуса SOT23. PBSS4350Z рассматривается как прямая замена для BDP31, а PBSS4540Z имеет на сегодняшний день наибольший ток коллектора (Ic $\max = 5$ A) для корпуса SOT223.

Замена обычных транзисторов на BISS-транзисторы открывает различные возможности для улучшения характеристик и увеличения эффективности выпускаемого оборудования.

BISS-транзистор, собранный в том же корпусе, что и обычный транзистор, рассеивает меньше тепла.

$$T_i = T_a + R_{th} \times V_{CE_{col}} \times I_c$$

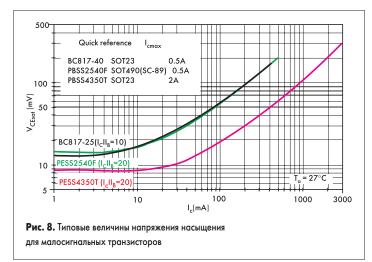
Фактическое рассеяние мощности у него на 65% ниже, чем у обычного транзистора.

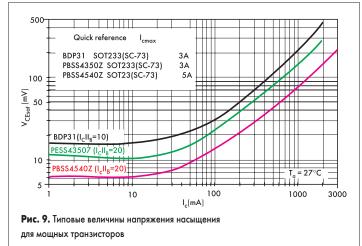
Таким образом, применение BISS-транзисторов позволяет избежать мест локального перегрева на печатной плате. Схема становится более надежной и эффективной. В некоторых случаях может использоваться менее дорогая печатная плата.

Более высокий максимальный ток коллектора и, кроме того, более высокий максимальный импульсный ток коллектора — еще одно дополнительное преимущество эмиттера ячеистого типа.

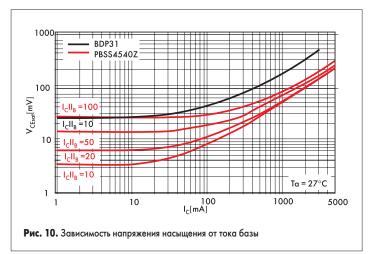
Максимальный ток коллектора теперь может быть повышен до 2 А для корпуса SOT23 (PBSS4350T) или до 3 А для корпуса SOT457 (SC-74), по сравнению с 0,5 А для BC817.

Теперь для транзистора в корпусе SOT223 максимально допустимый ток коллектора — 5 А, величина, ранее не достижимая для этого корпуса.


Для малосигнальных приложений (ток коллектора до 0,5 A) рекомендуется BISS-транзистор PBSS2540F, имеющий размеры $1,6\times0,8$ мм в корпусе SOT490 (SC-89).


В таблице 1 показан краткий обзор для BISS-транзисторов по сравнению с обычными в том же корпусе.

Главная причина уменьшения рассеиваемой мощности — уменьшение напряжения насыщения $U_{K \ni max}$. По сравнению с обычным транзистором 0,5 A в корпусе SOT23 напряжение насыщения понижено на 73%. Следующее поколение BISS-транзисторов будет иметь еще меньшее напряжение насыщения.


Таблица 2. Напряжение насыщения некоторых транзисторов

Технология	Тип	U _{КЭтах} при IK = 0,5 A				
Обычный	BC817-40	220 мВ типовое				
BISS 1-го поколения	PBSS4140T	130 мВ типовое				
BISS 2-го поколения	PBSS4350T	60 мВ типовое				

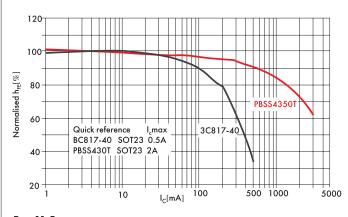


Рис. 11. Типовое усиление по постоянному току малосигнальных транзисторов

На рис. 8 показаны типовые напряжения насыщения транзисторов BC817-40 в корпусе SOT23, PBSS2540F в корпусе SOT490 (SC-89) и PBSS4350T в корпусе SOT23. На графике видно, что для намного меньшего по размерам PBSS2540F напряжение насыщения такое же, как и для BC817-40. Напряжение насыщения транзистора PBSS4350T на 60–70% меньше, чем у BC817-40.

На рис. 9 показаны типовые напряжения насыщения транзисторов BDP31, PBSS4350Z и PBSS4540Z (все транзисторы выполнены в корпусе SOT223). Напряжение насыщения PBSS4350Z составляет приблизительно 60%, а PBSS4540Z — приблизительно 30% от напряжения насыщения BDP31.

Разработчик имеет несколько возможностей выбора BISS-транзисторов при конструировании:

- Транзистор в миниатюрном корпусе SOT490 (SC-89) с характеристикой обычного транзистора в корпусе SOT23.
- Транзистор в корпусе SOT23 с очень низким напряжением насыщения. Имеет малую рассеиваемую мощность и позволяет избегать мест сильного нагрева.
- Транзистор в корпусе SOT23 с максимально допустимым током коллектора до 2 А, с напряжением насыщения меньшим, чем у обычного транзистора в корпусе SOT223.
 Для замены транзисторов средней мощности.
- Транзистор в корпусе SOT223 с очень низким напряжением насыщения. Имеет малую рассеиваемую мощность.
- Транзистор в корпусе SOT223 с максимально допустимым током коллектора до 5 А. Для замены транзисторов большой мощности.

На рис. 10 показана зависимость напряжения насыщения от тока коллектора при различных токах базы. Для сравнения взяты транзисторы PBSS4540Z и BDP31. На графике видно, что для низких значений тока коллектора (до 20 мА) транзистору PBSS4540Z достаточно в 10 раз меньшего тока базы для достижения того же самого напряжения насыщения по сравнению с транзистором BDP31. Для высоких значений тока коллектора (до 3 А) требуется в 4 раза меньший ток базы по сравнению с транзистором BDP31.

Меньшее напряжение насыщения BISSтранзистора уменьшает рассеиваемую мощность, позволяет увеличивать нагрузку выходного каскада, что особенно важно для схем с низким напряжением питания.

BISS-транзисторы имеют меньшую зависимость коэффициента усиления от тока коллектора. Рис. 11 показывает зависимость коэффициента усиления от тока коллектора транзисторов BC817-40 и PBSS4350T.

На графике видно, что при максимальном токе коллектора (500 мА) усиление транзистора ВС817-40 понижается примерно на 65% от первоначальной величины, в то время как у транзистора PBSS4350T при том же токе коллектора — только на 10%.

Меньший ток базы BISS-транзистора снижает нагрузку на цифровые цепи и имеет более низкую рассеиваемую мощность, особенно при высоких токах коллектора. Благодаря этому схема имеет более высокий КПД.

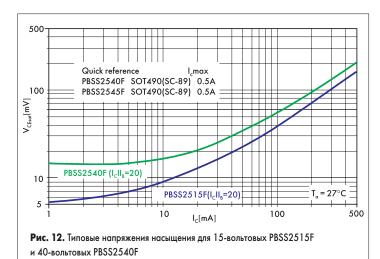
Рекомендации по выбору BISS-транзисторов

На сегодняшний день выпускается более 40 типов BISS-транзисторов. И их количество непрерывно увеличивается. Краткий обзор этих типов приведен в таблицах 3 и 4. Средняя колонка содержит общие данные рекомендованных транзисторов, а левая и правая колонки включают данные BISS-транзисторов.

Таблица 3. Применение BISS-транзисторов позволяет увеличить ток коллектора в данном корпусе или уменьшить размер корпуса

Тип транзистора			PBSS4350Z		BDP31			PBSS4540Z			
Тип корпуса			SOT223		SOT223			SOT223			
Размер корпуса, мм			6,5×3,5		6,5×3,5			6,5×3,5			
			мин.	тип.	макс.	мин.	тип.	макс.	мин.	тип.	макс.
Ток коллектора, А		I _K		3			0,5			3	
Максимальный ток коллектора, А		I _{Kmax}		5			1			5	
Напряжение коллектор-эмиттер, В		$U_{K \ni max}$		50			45			50	
Рассеиваемая мощность, Вт		Pmax	1,35*		2**		1,35*		1,35*		2**
	I _K =0,5 A	h ₂₁₃	200	335	-	40	75	-	300	500	-
Коэффициент усиления	I _K =2 A		100	195	-	20	55	-	250	450	-
	I _K =5 A				-			-	100	350	
	I _K =0,5 A	U _{КЭнас}	-	60	90	-	100	300	-	30	90
Напряжение насыщения, мВ	I _K =2 A		-	200	290	-	310	700	-	90	150
	I _K =5 A		-			-			-	210	355
	I _K =0,5 A	R _{КЭнас}	-	120	180	-	200	600	-	60	180
Эквивалентное сопротивление, мОм	I _K =2 A		-	100	145	-	155	350	-	45	75
	I _K =5 A		-			-			-	42	71

^{*} Транзистор имеет тепловой контакт с медной площадкой на печатной плате в 1 см².


Таблица 4. Применение BISS-транзисторов позволяет увеличить ток коллектора или избегать мест перегрева

Тип транзистора			PBSS2540F		BC817-40			PBSS4350T			
Тип корпуса			SOT490(SC-89)		SOT23			SOT23			
Размер корпуса, мм			1,6×0,8			2,9×1,3			2,9×1,3		
			мин.	тип.	макс.	мин.	тип.	макс.	мин.	тип.	макс.
Ток коллектора, А		I _K		0,5			0,5			3	
Максимальный ток коллектора, А		I _{Kmax}		1			1			5	
Напряжение коллектор-эмиттер, В		$U_{K\Im_{max}}$		40			45			50	
Рассеиваемая мощность, мВт		Pmax		250			250		300		480*
Коэффициент усиления	I _K =0,5 A	h ₂₁₃	50	130	-	40	130	600	300	580	-
Коэффициент усиления	I _K =2 A								200	360	-
Напряжение насыщения, мВ	I _K =0,5 A	U _{КЭнас}	-	200	250	-	200	700	-	60	80
попряжение насыщения, мь	I _K =2 A		-			-			-	200	260
3,40,400,000,000,000,000,000,000,000	I _K =0,5 A	R _{КЭнас}	-	400	500	-	400	1400	-	120	160
Эквивалентное сопротивление, мОм	I _K =2 A		-			-			-	100	130

^{*} Транзистор имеет тепловой контакт с медной площадкой на печатной плате размером 1 см².

^{* *} Транзистор имеет тепловой контакт с медной площадкой на печатной плате размером 6 см².

120-100 PBSS4540Z Quick reference l max PBSS4350Z SOT233(SC-73) 5A PBSS4350Z PBSS4540Z SOT233(SC-73) 5A 20 $V_{CE} = 2V$ T = 25°C 3000 5000 100 1000 $I_c[mA]$

Рис. 13. Развитие BISS-транзисторов: транзистор 5 A PBSS4540Z имеет более высокое усиление по току, чем 3 A PBSS4350Z

Таблица 5. Рассеиваемая мощность в зависимости от корпуса и величины монтажной площади

		Ртах (мВт)	Ртах (мВт)	Ртах (мВт)	BISS-транзистор	
Размер	Корпус	на основании транзистора	монтажная площадка 1 см²	монтажная площадка 6 см²		
1608	SOT490 (SC-89)	250			PBSS2540F	
1612	SOT666	250	300		PBSS4140V	
2012	SOT323 (SC-70)	250	350		PBSS4140U	
2012	SOT363 (SC-88)	270	430		PBSS4240Y	
2913	SOT23	250	480		PBSS4240T	
2915	SOT457 (SC-74)		600	750	PBSS4350D	
6335	SOT223 (SC-73)		1350	2000	PBSS4540Z	
	SOT54 (TO-92)	830			PBSS4350S	

В таблице 5 приведены величины рассеиваемых мощностей для различных корпусов.

Если не требуется транзистор с высоким рабочим напряжением ($U_{K\Im max} = 40-50~B$), то рекомендуется выбрать транзистор с более низким допустимым напряжением

 $(U_{K9max}=15-20~B)$, так как он имеет более низкое напряжение насыщения и, как следствие, меньшую рассеиваемую мощность. На рис. 12 приведены типовые напряжения насыщения для 15-вольтовых PBSS2515F и 40-вольтовых PBSS2540F.

Если у выбранного транзистора при заданном токе недостаточен коэффициент усиления, то можно выбрать транзистор с более высоким максимальным током коллектора. Например, у транзисторов PBSS4540Z (Imax=5 A) при токе 3 А снижение коэффициента усиления всего 10%, тогда как у PBSS4350Z (Imax=3 A) снижение — 70% (рис. 13).

Преимущества BISS-транзисторов:

- низкое напряжение насыщения, низкое эквивалентное сопротивление коллекторэмиттер;
- малая рассеиваемая мощность;
- высокий ток коллектора, связанный с его площадью;
- высокий коэффициент усиления по току при больших токах коллектора.